๐Ÿ“š Study/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ธฐ์‚ฌ ์‹ค๊ธฐ

[๋น…๋ถ„๊ธฐ] 2021 ์ œ3ํšŒ ๋น…๋ฐ์ดํ„ฐ๋ถ„์„๊ธฐ์‚ฌ ์‹ค๊ธฐํ•ฉ๊ฒฉ ํ›„๊ธฐ - ๊ณต๋ถ€๋ฐฉ๋ฒ• ๋ฐ ๋ณต์›๋ฌธ์ œ

xod22 2021. 12. 22. 23:33
728x90

์ €๋Š” ์ œ 3ํšŒ ๋น…๋ฐ์ดํ„ฐ๋ถ„์„๊ธฐ์‚ฌ ์‹œํ—˜์— ์‘์‹œํ–ˆ๊ณ ! 

๊ฒฐ๊ณผ๋Š” ํ•ฉ๊ฒฉ!!!

๋น…๋ฐ์ดํ„ฐ๋ถ„์„๊ธฐ์‚ฌ ์‹ค๊ธฐ ์‹œํ—˜์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ๋งŽ์ด ์—†์–ด์„œ ๊ณต๋ถ€ ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๊ฐ€๋Š”๊ฒŒ ๊ฐ€์žฅ ์–ด๋ ค์› ๋˜ ๊ฒƒ ๊ฐ™์•„์š”!

๊ทธ๋ž˜์„œ ์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ ์ œ๊ฐ€ ํ•œ ๊ณต๋ถ€๋ฐฉ๋ฒ• ๋ฐ ํŒ์„ ์ ์–ด๋ณด๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

 


1. ๊ต์žฌ

์šฐ์„  ์ €๋Š” ์‚ฐ์—…๊ฒฝ์˜๊ณตํ•™์„ ์ „๊ณตํ•˜๊ณ ์žˆ๊ณ  ๊ทธ๋Ÿฌ๋‹ค๋ณด๋‹ˆ python์œผ๋กœ ๋ฐ์ดํ„ฐ๋ถ„์„์„ ์ž์ฃผ(?) ํ•ด์™”์–ด์„œ ๊ณต๋ถ€๊ธฐ๊ฐ„์„ ๊ทธ๋ ‡๊ฒŒ ์˜ค๋ž˜ ์žก์ง€๋Š” ์•Š์•˜๊ณ  ๋ฐ˜๋ณต์ ์œผ๋กœ ์ฝ”๋“œ๋ฅผ ๋งŽ์ด ์ž‘์„ฑํ•ด๋ณธ ๊ฒƒ ๊ฐ™์•„์š”.

 

๊ทธ๋ž˜๋„ ์ฝ”๋“œ๋ฅผ ์ „๋ถ€ ์™ธ์›Œ์„œ ์‹œํ—˜์— ์‘์‹œ๋ฅผ ํ•ด์•ผํ•˜๊ณ  ์–ด๋–ค ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™˜ํ•˜์—ฌ ์‚ฌ์šฉํ•ด์•ผํ• ์ง€ ๋ชจ๋ฅด๋Š” ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์— ์–ผ๋งŒํผ python์„ ์•„๋А๋ƒ๋ณด๋‹ค ์ฒ˜์Œ๋ถ€ํ„ฐ ์ฐจ๊ทผ์ฐจ๊ทผ ๊ณต๋ถ€๋ฅผ ํ•ด๋‚˜๊ฐ€์‹œ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค!


์ฑ…์€ ์ด๋ ‡๊ฒŒ ๋ฐ์ดํ„ฐ์บ ํผ์Šค์™€ ์ˆ˜์ œ๋น„ ์ฑ… ๋‘๊ถŒ์„ ๊ตฌ์ž…ํ•˜์˜€๋Š”๋ฐ

(์ œ๊ฐ€ ๋‹ค์‹œ ์‹œํ—˜์„ ๋ณธ๋‹ค๋ฉด ์ˆ˜์ œ๋น„ ์ฑ… ํ•œ๊ถŒ๋งŒ ๊ตฌ์ž…ํ•  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค..ใ…Ž)

๋ฐ์ดํ„ฐ์บ ํผ์Šค
์ˆ˜์ œ๋น„

  ์ˆ˜์ œ๋น„ ๋ฐ์ดํ„ฐ์บ ํผ์Šค
์–ธ์–ด R Python
๋‹จ๋‹ตํ˜• O X
๊ธฐ์ถœ๋ฌธ์ œ O X
์˜ˆ์ƒ๋ฌธ์ œ O X

์ œ๊ฐ€ ๋ณธ ์‹œํ—˜์ด ์‹ค์ƒ 2ํšŒ์ฐจ๋ผ์„œ ๊ทธ๋Ÿฐ์ง€ ์ฑ…์ด ๋งŽ์ด ์—†์–ด์„œ ๊ณ ๋ฏผ์„ ๋งŽ์ดํ•˜๋‹ค๊ฐ€ ๋‘๊ถŒ์„ ๋‹ค ๊ตฌ์ž…ํ•œ ๊ฒƒ์ธ๋ฐ ์‚ฌ์‹ค..๋„ˆ๋ฌด..์•„๊นŒ์› ์–ด์š”..ใ…Ž

 

๋ฐ์ดํ„ฐ์บ ํผ์Šค ์ฑ…์€ ์ œ๊ฐ€ Python์œผ๋กœ ์‘์‹œ๋ฅผ ํ•˜๊ณ  ์‹ถ์–ด์„œ ๊ตฌ์ž…ํ•œ ์ฑ…์ธ๋ฐ ๊ธฐ์ดˆ๋ถ€ํ„ฐ ์ž˜ ์„ค๋ช…๋˜์–ด์žˆ๊ธด ํ•˜์ง€๋งŒ ํ›„๋ฐ˜๋ถ€๋กœ ๊ฐˆ์ˆ˜๋ก ์„ค๋ช…๋„ ๋œํ•˜๊ณ ? ๊ฐ€๋…์„ฑ๋„ ๊ต‰์žฅํžˆ..๋–จ์–ด์ง‘๋‹ˆ๋‹ค.. ๊ฒŒ๋‹ค๊ฐ€ ๊ธฐ์ถœ๋ฌธ์ œ๋„ ์—†๊ณ  ๋‹จ๋‹ตํ˜• ๋Œ€๋น„๋„ ์ „ํ˜€๋˜์–ด์žˆ์ง€ ์•Š์•„์„œ ๊ณต๋ถ€๋ฅผ ํ•˜๋ฉด์„œ ๋‹นํ™ฉํ–ˆ๋˜ ๊ฒƒ ๊ฐ™์•„์š”.


๊ทธ๋ž˜์„œ ๋ฐ์ดํ„ฐ์บ ํผ์Šค์—์„œ ๊ธฐ์ดˆ์ ์ธ ๊ฒƒ๋“ค์„ ๊ณต๋ถ€ํ•˜๊ณ  ์ˆ˜์ œ๋น„์ฑ…์œผ๋กœ ์ž‘์—…ํ˜• ์ œ1์œ ํ˜•๊ณผ ์ž‘์—…ํ˜• ์ œ2์œ ํ˜• ๊ธฐ์ถœ๊ณผ ์˜ˆ์ƒ๋ฌธ์ œ๋ฅผ ๋ฐ˜๋ณตํ•ด์„œ ํ’€์–ด๋ณด๋ฉด์„œ ๋ฌธ์ œํ‘ธ๋Š” ๋ฐฉ๋ฒ•์— ์ต์ˆ™ํ•ด์ง€๋ ค๊ณ  ํ–ˆ์Šต๋‹ˆ๋‹ค!

 

์ˆ˜์ œ๋น„ ์งฑ...์ตœ๊ณ ... ํ•ด์„ค์ด R๋กœ ๋˜์–ด์žˆ๊ธด ํ•˜์ง€๋งŒ.. 

๊ทธ๋ž˜์„œ ๋ง‰ํžˆ๋ฉด ๊ตฌ๊ธ€๋ง์„ ๊ฒ๋‚˜ ํ•ด์•ผํ–ˆ์ง€๋งŒ..

๊ทธ๋ž˜๋„ ์ˆ˜์ œ๋น„์ฑ… ๋•๋ถ„์— ๊ฐ์„ ๋งŽ์ด ์ฐพ์•˜๋˜ ๊ฒƒ ๊ฐ™์•„์š”!

 

2. ๊ณต๋ถ€๋ฐฉ๋ฒ•

์ž‘์—…ํ˜• ์ œ 2์œ ํ˜• -> ์ž‘์—…ํ˜• ์ œ 1์œ ํ˜• -> ๋‹จ๋‹ตํ˜•

์ด ์ˆœ์„œ๋กœ ๊ณต๋ถ€ํ•˜์˜€๊ณ  ๋‹จ๋‹ตํ˜•์€ ํ•„๊ธฐ์‹œํ—˜ ๋•Œ  ๋‹ค์ ธ๋†“์€ ๊ธฐ์ดˆ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํฌ๊ฒŒ ๊ฑฑ์ •์€ ์•ˆํ•˜์…”๋„ ๋˜๊ณ 

์ž‘์—…ํ˜• ์ œ2์œ ํ˜•๊ณผ ์ œ 1์œ ํ˜•์„ ์ง‘์ค‘์ ์œผ๋กœ ๊ณต๋ถ€ํ•˜์„ธ์š”.!

 

<์ž‘์—…ํ˜• ์ œ 2์œ ํ˜•>

1) pandas ๊ธฐ๋ณธ ์ตํžˆ๊ธฐ
2) ๊ตฌ๋ฆ„ ์‘์‹œํ™˜๊ฒฝ์— ์ œ 2์œ ํ˜• ์˜ˆ์ƒ๋ฌธ์ œ ํ’€์–ด๋ณด๊ธฐ

3) ๊ธฐ์ถœ๋ฌธ์ œ ์ž‘์—…ํ˜• ์ œ2์œ ํ˜• ํ’€์–ด๋ณด๊ธฐ
4) ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ตํžˆ๊ธฐ

5) ๊ตฌ๋ฆ„ ์‘์‹œํ™˜๊ฒฝ์—์„œ ์ œ 2์œ ํ˜• ์˜ˆ์ƒ๋ฌธ์ œ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๋กœ ํ’€์–ด๋ณด๊ธฐ

6) ๊ธฐ์ถœ๋ฌธ์ œ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๋กœ ํ’€์–ด๋ณด๊ธฐ

 

ํฌ๊ฒŒ ์ด ์ˆœ์„œ๋กœ ๊ณต๋ถ€๋ฅผ ํ•˜์˜€๊ณ  ์ข‹์€ ๋ฐฉ๋ฒ•์ด์—ˆ๋˜ ๊ฒƒ ๊ฐ™์•„์„œ ์จ๋ด…๋‹ˆ๋‹ค...

 

 

๊ตฌ๋ฆ„EDU - ๋ชจ๋‘๋ฅผ ์œ„ํ•œ ๋งž์ถคํ˜• IT๊ต์œก

๊ตฌ๋ฆ„EDU๋Š” ๋ชจ๋‘๋ฅผ ์œ„ํ•œ ๋งž์ถคํ˜• IT๊ต์œก ํ”Œ๋žซํผ์ž…๋‹ˆ๋‹ค. ๊ฐœ์ธ/ํ•™๊ต/๊ธฐ์—… ๋ฐ ๊ธฐ๊ด€ ๋ณ„ ์ตœ์ ํ™”๋œ IT๊ต์œก ์†”๋ฃจ์…˜์„ ๊ฒฝํ—˜ํ•ด๋ณด์„ธ์š”. ๊ธฐ์ดˆ๋ถ€ํ„ฐ ์‹ค๋ฌด ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ต์œก, ์ „๊ตญ ์ดˆ์ค‘๊ณ /๋Œ€ํ•™๊ต ์˜จ๋ผ์ธ ๊ฐ•์˜, ๊ธฐ์—…/

edu.goorm.io

์ €๋Š” ์ฒ˜์Œ ์—ฐ์Šต์„ ๊ตฌ๋ฆ„ ์‘์‹œํ™˜๊ฒฝ์—์„œ ํ•˜์‹œ๋Š”๊ฒƒ์„ ์ถ”์ฒœ๋“œ๋ฆฌ๋Š”๊ฒŒ ์ƒ๊ฐ๋ณด๋‹ค ์˜ค๋ฅ˜๋„ ๋งŽ๊ณ  ์ ์‘ํ•˜๋Š”๋ฐ ์˜ค๋ž˜๊ฑธ๋ ค์„œ ์ด ๋งํฌ๋กœ ์ ‘์†ํ•˜์‹œ๋ฉด ๋‚˜์˜ค๋Š” ์˜ˆ์ƒ๋ฌธ์ œ๋ฅผ ๊ฐ€์žฅ ๋จผ์ € ํ’€์–ด๋ณด์‹œ๋Š” ๊ฒƒ์„ ์ถ”์ฒœ๋“œ๋ ค์š”!

 

์ด ๋งํฌ๋ฅผ ํƒ€๊ณ  ๋“ค์–ด๊ฐ€๋ฉด ํ’€์ด๋„ ๋‚˜์˜ค๋Š”๋ฐ ํ•œ๋ฒˆ ์ญ‰ ๋ณด๋ฉด์„œ ์ผ๋‹จ ์ฝ”๋“œ ์ž‘์„ฑ ํ๋ฆ„์„ ์žก์œผ์‹œ๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•ด์š”!

 

๋น…๋ฐ์ดํ„ฐ๋ถ„์„๊ธฐ์‚ฌ ์‹ค๊ธฐ ์˜ˆ์ œ ๋ฌธ์ œ ํ’€์ด (21.06.08)

๋น…๋ฐ์ดํ„ฐ๋ถ„์„๊ธฐ์‚ฌ ์‹ค๊ธฐ๊ฐ€ ์–ผ๋งˆ ๋‚จ์ง€ ์•Š์•˜๋‹ค. ๊ณต๋ถ€๊ธฐ๋ก์„ ๋‚จ๊ธฐ๊ธฐ ์œ„ํ•ด ๋ธ”๋กœ๊ทธ๋ฅผ ์‚ฌ์šฉํ•ด๋ณธ๋‹ค. ํ•™๋ถ€์‹œ์ ˆ์—๋Š” ...

blog.naver.com


์ €๋Š” ํฐ ํ‹€์„

1. ๊ฒฐ์ธก์น˜ ํ™•์ธ
2. ๋”๋ฏธ๋ณ€์ˆ˜๋ณ€ํ™˜
3. ์ •๊ทœํ™”
4. train/valid ๋‚˜๋ˆ„๊ธฐ
5. ๋ชจ๋ธ์ƒ์„ฑ
6. valid ์˜ˆ์ธก๋ ฅ ํ™•์ธ ํ›„ ๊ดœ์ฐฎ์œผ๋ฉด train/valid ๋‹ค์‹œ train์œผ๋กœ ํ•ฉ์น˜๊ธฐ(valid ๋‚˜๋ˆ„์—ˆ๋˜ ๊ฒƒ์„ ์ฃผ์„์ฒ˜๋ฆฌ ํ•˜๋ฉด๋จ)
7. train/test ๋ฐ์ดํ„ฐ ๊ฐ€์ง€๊ณ  ๋ชจ๋ธ ์ƒ์„ฑ
8. ์ €์žฅ

์ด๋ ‡๊ฒŒ ๋†“๊ณ  ๊ณ„์† ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ๊ฐํ•˜๋ฉด์„œ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ–ˆ์–ด์š”,,,

๊ฒฐ๊ตญ ํŒŒ์ผ์ด ๋ฐ”๋€Œ๋”๋ผ๋„ ์ด ์ˆœ์„œ๋Š” ๊ฐ™๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ์ž‘์„ฑํ•˜๋‹ค๋ณด๋ฉด ๊ฐ์ด ์žกํžŒ๋‹ต๋‹ˆ๋‹น!

 

์ œ๊ฐ€ ์ž‘์„ฑํ•œ ์ฝ”๋“œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€๋ฐ ์ฐธ๊ณ ๋งŒ ํ•˜์‹œ๊ณ  ๊ผญ ๋ณธ์ธ๋งŒ์˜ ํ‹€์„ ์žก์œผ์„ธ์š”!!!!!

< ์‚ฌ์ดํŠธ ์˜ˆ์ œ-์ž‘์—…ํ˜•2ํ˜• >
import pandas as pd
X_test = pd.read_csv("data/X_test.csv")
X_train = pd.read_csv("data/X_train.csv")
y_train = pd.read_csv("data/y_train.csv")

print(X_test.info())
# ์ฃผ๊ตฌ๋งค์ƒํ’ˆ, ์ฃผ๊ตฌ๋งค์ง€์  object์ž„

# ๊ฒฐ์ธก์น˜ ํ™•์ธ
print(X_test.isnull().sum()) # ํ™˜๋ถˆ๊ธˆ์•ก(1611๊ฐœ)
print(X_train.isnull().sum()) # ํ™˜๋ถˆ๊ธˆ์•ก(2295๊ฐœ)

# ๊ฒฐ์ธก์น˜ ์ฑ„์šฐ๊ธฐ
X_train=X_train.fillna(0)
X_test=X_test.fillna(0)

# ๋”๋ฏธ๋ณ€์ˆ˜ ๋ณ€ํ™˜
# ์ฃผ๊ตฌ๋งค์ƒํ’ˆ, ์ฃผ๊ตฌ๋งค์ง€์ 
unique_train=X_train['์ฃผ๊ตฌ๋งค์ƒํ’ˆ'].unique()
unique_test=X_test['์ฃผ๊ตฌ๋งค์ƒํ’ˆ'].unique()
print(len(unique_train))
print(len(unique_test))

print(set(X_train['์ฃผ๊ตฌ๋งค์ƒํ’ˆ'].unique())-set(X_test['์ฃผ๊ตฌ๋งค์ƒํ’ˆ'].unique()))
# ์†Œํ˜•๊ฐ€์ „์„ ์‚ญ์ œํ•  ์ˆ˜ ์žˆ๋‚˜ ํ™•์ธ
print(X_train[X_train['์ฃผ๊ตฌ๋งค์ƒํ’ˆ']=='์†Œํ˜•๊ฐ€์ „'])
# cust_id=1521, 2035์ธ ๊ฒƒ ์‚ญ์ œ
X_train_reset=X_train[X_train['์ฃผ๊ตฌ๋งค์ƒํ’ˆ']!='์†Œํ˜•๊ฐ€์ „'].reset_index(drop=True)  
y_train_reset=y_train[(y_train['cust_id']!= 1521) & (y_train['cust_id']!= 2035)].reset_index(drop=True)

print(X_train_reset.shape)
print(X_train.shape)
# ์‚ญ์ œ ์™„๋ฃŒ
# ํ•„์š”์—†๋Š” ์—ด ์‚ญ์ œํ•  ๊ฒƒ์ž„
# ๊ทธ์ „์— ํ•„์š”ํ•œ cust_id ์ €์žฅ
cust_id=X_test[["cust_id"]]
X_train_ready=X_train_reset.drop('cust_id', axis=1)
X_test_ready=X_test.drop('cust_id', axis=1)
y_train_ready=y_train_reset[['gender']]

# ๋ฒ”์ฃผ๋ณ€ํ™˜
X_train_dum=pd.get_dummies(X_train_ready)
X_test_dum=pd.get_dummies(X_test_ready)

# ์ •๊ทœํ™”
from sklearn.preprocessing import MinMaxScaler
minmax=MinMaxScaler()
minmax.fit(X_train_dum)
minmax_X_train=minmax.transform(X_train_dum)
minmax_X_test=minmax.transform(X_test_dum)

print(pd.DataFrame(minmax_X_train).describe())

# train : minmax_X_train/ minmax_X_test / y_train_ready / cust_id
# train/validation์œผ๋กœ ๋ณ€ํ™˜

#from sklearn.model_selection import train_test_split
#X_train_, X_valid, y_train_, y_valid=train_test_split(minmax_X_train, y_train_ready, stratify=y_train_ready, test_size=0.2)

# ๋ชจ๋ธ ์ƒ์„ฑ
from sklearn.ensemble import RandomForestClassifier
model=RandomForestClassifier(random_state=42, n_estimators=200, max_depth=10)
#model.fit(X_train_, y_train_.values.ravel())
#prob_train=model.predict_proba(X_train_)[:, 1]
#print(model.score(X_train_, y_train_.values.ravel()))
#print(model.score(X_valid, y_valid))

# X_train, X_valid ํ•ฉ์ณ์„œ
model.fit(minmax_X_train, y_train_ready.values.ravel())
prob_train=model.predict_proba(minmax_X_train)[:, 1]
print(model.score(minmax_X_train, y_train_ready.values.ravel()))

# ์˜ˆ์ธก
prob_test=model.predict_proba(minmax_X_test)[:, 1]
prob_test=pd.DataFrame(prob_test)

# ํ•ฉ์น˜๊ธฐ
total=pd.concat([cust_id, prob_test], axis=1)
total.columns=['cust_id', 'gender']
print(total)

total.to_csv('003001027.csv', index=False)

# ์ž˜ ์ €์žฅ๋˜์—ˆ๋Š”์ง€ ํ™•์ธ
ghkrdls=pd.read_csv("003001027.csv")
print(ghkrdls)

<์ž‘์—…ํ˜• ์ œ 1์œ ํ˜•>

์ž‘์—…ํ˜• ์ œ 1์œ ํ˜•์€ 2์œ ํ˜•์— ์ต์ˆ™ํ•ด์ง€๊ณ  ๋‚œ ํ›„์— ํ•˜๋Š” ๊ฒƒ์ด ๋” ๋น ๋ฅด๊ฒŒ ๊ณต๋ถ€๋ฅผ ํ•ด๋‚˜๊ฐˆ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ ๊ฐ™์•„์š”!

๋‹ค๋ฅธ ํŒ์€ ๋”ฐ๋กœ ์—†๊ณ  ์ˆ˜์ œ๋น„์ฑ…์˜ ๋ชจ์˜๊ณ ์‚ฌ์™€ ๊ธฐ์ถœ๋ฌธ์ œ๋ฅผ ๋ฐ˜๋ณต์ ์œผ๋กœ ํ’€์–ด๋ณด๋ฉด์„œ ๊ฐ์„ ์žก์•˜์Šต๋‹ˆ๋‹ค.

 

์ด์ œ ์ด๋ฒˆ ํšŒ์ฐจ๊นŒ์ง€ ํ•˜๋ฉด ์ œ1์œ ํ˜• ๊ธฐ์ถœ๋ฌธ์ œ๊ฐ€ 6๋ฌธ์ œ๊ฐ€ ๋ ํ…๋ฐ ๋‹ค๋ฅธ ๊ฒƒ ๋ณด๋‹ค๋„ ์šฐ์„  ๊ธฐ์ถœ๋ฌธ์ œ 6๋ฌธ์ œ ํ’€์–ด๋ณด์‹œ๋ฉด ๊ฐ์ด ์žกํžˆ์‹ค ๊ฑฐ์—์š”!

๋Œ€๋ถ€๋ถ„ ๋น„์Šทํ•œ ์ฝ”๋“œ๋กœ ์ž‘์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ์„ ์šฐ์„  ์žก์œผ์‹  ํ›„์— ๋ชจ์˜๊ณ ์‚ฌ ๋ฌธ์ œ๋ฅผ ํ’€์–ด๋ณด์‹œ๋ฉด ๋ช‡์ผ๋งŒ์— ๊ธˆ๋ฐฉ ์™„..๋ฒฝํ•˜๊ฒŒ ํ’€์–ด๋‚ด์‹ค ์ˆ˜ ์žˆ์„ ๊ฑฐ์—์š”!!

 


<๋‹จ๋‹ตํ˜•>

๋‹จ๋‹ตํ˜•์€ ์ €๋Š” ๋”ฐ๋กœ ์ค€๋น„ํ•œ ๊ฑด ์—†๊ณ  ์ˆ˜์ œ๋น„ ์นดํŽ˜์— ๊ฐ€์ž…ํ•ด์„œ ์ˆ˜์ œ๋น„ daily๋ฌธ์ œ๋ฅผ ์บก์ณํ•ด๋†“๊ณ  ์‹œ๊ฐ„ ๋‚ ๋•Œ๋งˆ๋‹ค ๋ฐ˜๋ณต์ ์œผ๋กœ ๋ณด๋ฉด์„œ ๊ธฐ์–ต์†์—..๋ฐ•ํ˜€์žˆ๋˜ ๋‹จ์–ด๋“ค์„ ๊ธฐ์–ต์†์—์„œ ๋„์ง‘์–ด๋‚ด๋Š” ์—ฐ์Šต์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.

 

์‚ฌ์‹ค์ƒ ํ•„๊ธฐ ๋ฒ”์œ„๊ฐ€ ๋„ˆ๋ฌด ๋„“๊ธฐ ๋•Œ๋ฌธ์— ์–ด๋–ค ๋ฌธ์ œ๊ฐ€ ๋‚˜์˜ฌ์ง€ ์˜ˆ์ƒํ•˜๊ธฐ ์–ด๋ ต์ง€๋งŒ ๋ถ„๋ช…ํ•œ๊ฑด ์–ด๋ ต๊ฒŒ ๋‚˜์˜ค์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์ดˆ์ ์ธ ๊ฒƒ๋“ค๋งŒ ํ•œ๋ฒˆ ์“ฐ์œฝ ํ›‘์–ด๋ณด๊ณ  ๊ฐ€์‹œ๋ฉด ์‹œํ—˜๋•Œ ๋ฌด๋ฆฌ์—†์ด ํ’€์–ด๋‚ด์‹ค ์ˆ˜ ์žˆ์„๊บผ์—์š”!

 

 

3. ๊ธฐ์–ต๋‚˜๋Š” ๋ฌธ์ œ๋“ค..

 

<์ž‘์—…ํ˜• ์ œ1์œ ํ˜•>
๋ฌธ์ œ 1 : ๋ฐ์ดํ„ฐ ๊ฒฐ์ธก ๊ฐ’ ์ œ๊ฑฐํ•˜๊ณ  ์ƒ์œ„ 70% ๋ฐ์ดํ„ฐ๋ฅผ ํ›ˆ๋ จ ์…‹์œผ๋กœ ๋งŒ๋“ค๊ณ  ์–ด๋–ค ์นผ๋Ÿผ์˜ 1์‚ฌ๋ถ„์œ„ ์ˆ˜ ๊ตฌํ•˜๊ธฐ
๋ฌธ์ œ 2 : ์—ฐ๋„๋ณ„, ๊ตญ๊ฐ€๋ณ„ ์œ ๋ณ‘์œจ ๋ฐ์ดํ„ฐ์—์„œ 2000๋…„๋„ ๋ฐ์ดํ„ฐ์—์„œ ์ „์ฒด ํ‰๊ท ๋ณด๋‹ค ๋†’์€ ๊ตญ๊ฐ€๋Š” ๋ช‡๊ฐœ์ธ๊ฐ€?
๋ฌธ์ œ 3 : ํƒ€์ดํƒ€๋‹‰ ๋ฐ์ดํ„ฐ์—์„œ ๊ฒฐ์ธก๊ฐ’ ๋น„์œจ์ด ๊ฐ€์žฅ ํฐ ์นผ๋Ÿผ๋ช… ์ฐพ๊ธฐ

<์ž‘์—…ํ˜• ์ œ2์œ ํ˜•>
๋ณด์—…๊ฐ€์ž… ์—ฌ๋ถ€ ํ™•๋ฅ  ๊ตฌํ•˜๊ธฐ(๋ถ„๋ฅ˜๋ฌธ์ œ)


์ด๋ ‡๊ฒŒ..์˜ˆ์ƒ๋ฌธ์ œ์™€ ํฌ๊ฒŒ ๋ฒ—์–ด๋‚˜์ง€ ์•Š๋Š” ๋ฌธ์ œ๋“ค์ด ๋‚˜์™”๊ณ  ์ž‘์—…ํ˜• ์ œ 2์œ ํ˜•์˜ ๊ฒฝ์šฐ ํ•˜๋‚˜์˜ ์„ฑ๋Šฅ์ข‹์€ ๋ถ„๋ฅ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ค€๋น„ํ•ด๊ฐ€์…จ๋‹ค๋ฉด ๋ชจ๋ธ์„ ์ž‘์„ฑํ•˜๋Š”๋ฐ ํฐ ์–ด๋ ค์›€์€ ์—†์—ˆ์„ ๋งŒํ•œ ๋ฌธ์ œ์˜€์Šต๋‹ˆ๋‹ค!

์ „์ฒ˜๋ฆฌ๋„ ์–ด๋ ต์ง€ ์•Š์•„์„œ ์‰ฝ๊ฒŒ ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ  ๋ชจ๋ธ ์„ฑ๋Šฅ๋„ ์—ฐ์Šตํ•  ๋•Œ ๋ณด๋‹ค ์ข‹๊ฒŒ๋‚˜์™€์„œ ๊ฐ๊ฒฉํ•˜๋ฉด์„œ ๋ฌธ์ œ๋ฅผ ํ’€์—ˆ๋˜ ๊ฒƒ ๊ฐ™์•„์š”!!

 

์ž‘์—…ํ˜• ๋ฌธ์ œ๋ฅผ ํ’€๋ฉด์„œ ๋А๋‚€๊ฑด..

๋ฌธ์ œ๋ฅผ ์ž˜ ์ฝ์ž..! 

 

์ž‘์—…ํ˜• ์ œ 1์œ ํ˜•์˜ ๊ฒฝ์šฐ ์ •์ˆ˜๋กœ ๋‹ต์„ ์ œ์ถœํ•˜๋ผ๊ณ  ์ ํ˜€์žˆ์–ด์„œ int๋ณ€ํ™˜์„ ํ•ด์ฃผ์–ด์•ผ ํ–ˆ๊ณ 

์ž‘์—…ํ˜• ์ œ 2์œ ํ˜•์˜ ๊ฒฝ์šฐ prob๋ฅผ ๊ตฌํ•ด์•ผํ•˜๋Š”๋ฐ 0/1๋กœ ์˜ˆ์ธกํ•˜์—ฌ ๋‹ต์•ˆ์„ ๋‚ด์‹  ๋ถ„๋“ค์ด ๋งŽ๋”๋ผ๊ตฌ์š”..!

๋ฌธ์ œ๋ฅผ ์ž˜ ์ฝ์–ด์„œ..์ด๋Ÿฐ ๋ถˆ์ƒ์‚ฌ๋Š” ์—†์• ์•ผ ํ•˜๋‹ˆ๊นŒ!

 


๋‹ค์ŒํšŒ์ฐจ ์‹œํ—˜ ๋ณด์‹œ๋Š”๋ถ„๋“ค~~ ๋‹ค๋œ ์—ด์‹ฌํžˆ ๊ผผ๊ผผํžˆ ์ค€๋น„ํ•˜์…”์„œ ํ•œ๋ฒˆ์— ํ•ฉ๊ฒฉํ•˜์‹œ๊ธธ..!

์ œ๊ฐ€ ์ ์–ด๋ณธ ํŒ๋“ค์ด ์กฐ๊ธˆ์ด๋‚˜๋งˆ ๋„์›€์ด ๋˜์—ˆ์œผ๋ฉด ์ข‹๊ฒ ์Šต๋‹ˆ๋‹ค!!

ํ™งํŒ…ูฉ(หŠ  แ—œห‹*)ูˆ!!

728x90
๋Œ“๊ธ€์ˆ˜0